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Abstract— Existing techniques for motion imitation of-

ten suffer a certain level of latency due to their computa-

tional overhead or a large set of correspondence samples to

search. To achieve real-time imitation with small latency,

we present a framework in this paper to reconstruct

motion on humanoids based on sparsely sampled corre-

spondence. The imitation problem is formulated as finding

the projection of a point from the configuration space

of a human’s poses into the configuration space of a

humanoid. An optimal projection is defined as the one

that minimizes a back-projected deviation among a group

of candidates, which can be determined in a very efficient

way. Benefited from this formulation, effective projections

can be obtained by using sparsely sampled correspondence,

whose generation scheme is also introduced in this paper.

Our method is evaluated by applying the human’s motion

captured by a RGB-D sensor to a humanoid in real time.

Continuous motion can be realized and used in the example

application of tele-operation.

Index Terms— motion imitation, configuration projec-

tion, sparsely sampled correspondence, tele-operation

I. INTRODUCTION

Humanoid robots have been widely studied in the

research of robotics. With the recent development of

motion capture devices such as RGB-D camera (e.g.,

Kinect) and wearable sensor system (e.g., Xsens MVN),

efforts have been made to generate human-like mo-

tions for humanoid robots with high degree-of-freedoms.

However, directly applying captured poses of human

to humanoids is difficult due to the difference in hu-

man’s and humanoid’s kinematics. Therefore, a variety

of kinematics based approaches for humanoid imitation

have been investigated, which can be classified into two

categories. Many of them perform an offline optimiza-

tion step to compute corresponding configurations that
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conform to the mechanical structures and kinematics

of humanoids from input human data [1]–[6]. It is

obvious that the significant computational overhead in

those techniques prevents us from applying them to real-

time imitation. Methods in the other thread of research

compute online imitation following captured human mo-

tion [7]–[12].

In this paper, we consider about the problem of

realizing real-time human-to-humanoid motion imitation.

Unfortunately, it is not an easy task due to:

• full sampling of human-to-humanoid correspon-

dence often leads to large data size;

• high non-linearity of underlying mechanical rules

results in significant computational cost;

• how to find the configuration of a humanoid accord-

ing to the input poses of human in real-time is not

intuitive.

Artificial neural networks have been adopted to ease

the difficulties, with which a lot of efforts have been

made in simulation and for robots with small degree-

of-freedoms [13]–[21]. A recent work [17] by Stanton

et al. directly introduced neural networks with particle

swarm optimization to find the mapping between hu-

man movements and joint angle positions of humanoid.

However, there is no measurement presented in their

work to evaluate the quality of humanoid poses generated

by the trained neural system. On the other aspect, our

method is also different from this work in terms of

the training data set. We use the sparse correspondence

instead of the densely recorded raw data, which can help

eliminate the redundancy in data set and improve the

training speed. Moreover, only requiring a sparse set

of correspondence samples leads to a lower barrier of

system implementation.

We propose a framework that allows efficient projec-

tion of a pose from human’s space to the configuration

space of humanoid based on sparsely sampled corre-

spondence extracted from recorded raw data, which can

be used to realize motion imitation in real time (see

Fig. 2). Experimental results show that our framework

can be successfully applied in the motion imitation of
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Fig. 1. An example of imitation realized by our framework working

with the NAO humanoid.

humanoid (see Fig.1 for an example of tele-operation

using a NAO humanoid). Motion control is a very

important task in recent popular development of human-

robot interaction. With the help of this tool, the job of

robot’s motion control can be implemented easily by

assigning sparse correspondences between the poses of

human and humanoid robots.

II. FRAMEWORK OF CONFIGURATION PROJECTION

A. Problem Definition

A human pose can be uniquely represented as a

point (abbreviated as C-point) h ∈ R
m in the config-

uration space (abbreviated as C-space – H) of human’s

motion and its corresponding pose of humanoid can be

denoted as a point r ∈ R
n in the C-space of humanoid –

R. We assume one-to-one correspondence between the

poses of human body and humanoid, i.e. the mapping

between human and humanoid’s C-spaces is bijective.

A pair of human’s and humanoid’s configurations is

denoted as (h, r) ∈ R
m+n. Given stored correspondence

pairs {(h, r)} as the known knowledge and a new input

pose h∗ ∈ R
m, the configuration projection Ω(·) can be

defined as finding a corresponding r∗ ∈ R
n that satisfies

two basic properties:

• Identity – for any sample pair (hi, ri) in the data-

set, it should have

Ω(hi) = ri.

• Similarity – for an input C-point of human h∗, if

max{min
i

‖hi − h∗‖} < δ

then it should have

‖Ω(h∗)− r̃(h∗)‖ < ǫ,

where δ and ǫ are two constant values, and r̃(h∗)
is a C-point of humanoid that can be obtained by

more accurate but computational intensive methods

(e.g., inverse kinematics) as the ground truth.

All sample pairs should be repeated with the projection

Ω(·) according to the property of identity. The demand

on similarity indicates that if a new input is close to the

known samples, its projected result should not deviate

too much from its corresponding ground truth.

The main difficulty of finding the projection r∗ lies in

the lack of explicit functions to determine the mapping

between two C-spaces with different dimensions (i.e.,

degree-of-freedoms). Given sparsely aligned pairs of

poses as samples, we try to solve this problem by

proposing a strategy of kernel-based projection to find

a good approximation for r∗.

B. Data Pre-processing

The knowledge of correspondence {(h, r)} can be

established through experiments. Although aligning a

pose of human body with a corresponding pose of

humanoid can be taken manually, it is a task almost

impossible if thousands of such correspondence samples

need to be specified. Therefore, in our experiments, we

first capture continuous motions of human bodies by

using a motion capture system. The data-set obtained in

this way often results in large size and redundancy. To

resolve this problem, we perform a pre-processing step to

extract marker poses from the raw data-set recorded from

human’s motion. Specifically, mean shift clustering [22]

is employed to generate the marker set denoted as H.

For each sample ĥ ∈ H, its corresponding pose r̂

in the configuration space of humanoid can be either

specified manually (when the number of samples in H
is small) or generated automatically by a sophisticated

method (e.g., the inverse kinematics methods). The pairs

of correspondence, {(ĥi, r̂i)}i=1,··· ,N , extracted in this

way is treated as landmarks to be used in our framework.

C. ELM Based Kernels

As the configuration pairs of marker data-set are

discrete in space, we define a kernel κ(·) on each marker

configuration ĥi and r̂i as a local spatial descriptor using

the technique of Extreme Learning Machine (ELM) [23].

ELM method has been widely used in regression and

classification problems as a single hidden layer feed-

forward network (SLFN) with its advantageous prop-

erties of fast training speed, tuning-free neurons and

easiness in implementation (ref. [24]). Basically, the

training formula of ELM can be expressed as Hb = T,

where H is the hidden layer output matrix of SLFN, b



SUBMITTED TO ASME JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING 3

Fig. 2. An illustration of our framework for motion imitation using configuration projection.

is the output weight vector to be computed, and T is the

target feature vector.

Given a new input x, the prediction function of ELM

is f(x) = Q(x)b, where the Q(x) is the hidden layer

feature mapping of x. It has been pointed out in [23]

that the training errors will be eliminated if the number

of hidden nodes is not less than the number of training

samples, indicating the trained ELM can be used as a

fitting function that interpolates all training samples

Q(ĥi)b = r̂i, (i = 1, · · · , N).

In this case, the output weight vector is computed as

b = HT (HHT )−1T,

where HT (HHT )−1 is the Moore-Penrose generalized

inverse of H. Regularized ELM is proposed in [25] to

improve its numerical stability, leading to the following

training formula with λ (a very small value in practice)

as the regularization factor

b = HT (λ+HHT )−1T.

With the help of ELM, a kernel κhi (·) ∈ R
n for

a human’s landmark point ĥi can be built with its

nearest neighbors. Specifically, we find k spatial nearest

neighbors of ĥi in the set of human’s landmarks as

{ĥj}j∈N (ĥi)
, where N (·) denotes the set of nearest

neighbors. Then, the ELM kernel of κhi (·) is trained

using {(ĥj , r̂j)}j∈N (ĥi)
, which is regarded as an ap-

proximate local descriptor of the nearby mapping of ĥi:

H 7→ R. When inputting a new human pose h∗ ∈ R
m, a

local estimation of mapping with reference to this kernel

can be represented as

κhi (h
∗) = Q(h∗)b.

This function is called a forward kernel. Similarly, for

each C-point rmi of a humanoid, an ELM based kernel

κri (·) ∈ R
m can be constructed in the same way for the

Fig. 3. An illustration of finding an optimal point that minimizes a

back-projected deviation (with L = M = 4).

inverse mapping: R 7→ H. κri (·) is called a backward

kernel. These two types of kernel functions will be used

in our framework for realizing the projection.

D. Projection

For an input pose h∗ ∈ R
m, the point determined

by the ELM kernel function, κhi (h
∗), is not guaranteed

to satisfy the requirement of bijective mapping (i.e.,

κri (κ
h
i (h

∗)) 6= h∗). To improve the bijection of mapping,

the projection of a human’s C-point is formulated as de-

termining an optimal point from all candidates generated

from different forward kernels.

First of all, L nearest neighbors of h∗ are retrieved

in H as {ĥj} (j = 1, · · · , L). From the forward kernel

associated with each of these L points in H, a candidate

point in R can be determined by rcj = κhj (h
∗). For

each rcj , we search for its M nearest neighbors in R
as N (rcj) = {r̂j,k} (k = 1, · · · ,M ). In other words,

there are M backward kernels associated with rcj , which

are {κrj,k}. In each cluster of backward kernels, we

determine a set of weights wj,k that leads to a point
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formed as the convex combination of {r̂j,k}

r̃cj =
∑

k

wj,kr
c
j,k.

An optimal point r̃cj minimizes the deviation of back-

projection with regard to the cluster of kernels {κrj,k(·)}k
is defined as

min
wj,k

{‖κrj,k(
∑

k

wj,kr
c
j,k)− h∗‖}k,

s.t.

M
∑

k=1

wj,k = 1, wj,k ≥ 0.

(1)

The final projected point r∗ is then defined as

r∗ =
∑

k

wl,kr
c
l,k (2)

according to the cluster of N (rcl ) that gives the minimal

back-projected deviation, which is a solution of

min
j

{

min
wj,k

{‖κrj,k(
∑

k

wj,kr
c
j,k)− h∗‖}k

}

,

s.t.

M
∑

k=1

wj,k = 1, wj,k ≥ 0.

(3)

The computation for solving above optimization problem

can be slow in many cases. Therefore, we propose a sub-

optimal objective function as a relaxation of Eq.(3) to

be used in real-time applications (e.g., the tele-operation

shown in Fig.1). The problem is relaxed to

min
j

{

min
k

{‖κrj,k(r
c
j)− h∗‖}k

}

, (4)

the solution of which can be acquired very efficiently

by checking each candidate rcj with regard to all its M

reference backward kernels. Figure 3 gives an illustration

for the evaluation of back-projected deviation.

Motion Smoothing: A dynamic motion is processed as

a sequence of continuous poses in our system, where the

projected poses in the configuration space of humanoid

are generated separately. To avoid the generation of jerky

motion, we use a method modified from the double

exponential smoothing [26] to post-process the projected

poses. Given a projected pose rt at time frame t, the

update rules of a smoothed pose st are defined as

st = αyt + (1− α)(st−1 + bt−1), 0 ≤ α ≤ 1

bt = γ(st − st−1) + (1− γ)bt−1, 0 ≤ γ ≤ 1

st = st−1, if ‖st − st−1‖ < η

(5)

α, γ and η are parameters to control the effectiveness of

smoothing, where α = 0.75, γ = 0.3 and η = 0.15 are

used to give satisfactory results in our practice.

Fig. 4. Feature vectors of human and humanoid: (a) the human

skeleton from a Kinect sensor, (b) the corresponding pose descriptor

of a human body consists of 19 unit vectors, and (c) the pose

descriptor for a NAO humanoid formed by all DOFs on its joints

(source: http//:www.ez-robot.com).

Fig. 5. Basic poses serve as benchmarks for similarity evaluation.

Remark: It must be clarified the Identity property intro-

duced in Section II-A is relaxed to Ω(hi) ≈ ri in practice

due to the following reasons:

• Regularized ELM method is employed to construct

the kernels, which changes the corresponding en-

ergy function where a regularization term is added

to improve its numerical stability.

• Double exponential smoothing is applied for

smoothing a motion, which introduces minor ad-

justments on the output values.

III. REAL-TIME PROJECTION ON HUMANOIDS

Our framework is testified on real-time motion im-

itation of humanoids with a Kinect RGB-D camera

as the device to capture the motion of human. The

numerical tests are taken on a NAO humanoid robot as

a benchmark, and it is also applied to a lab-made Poppy

humanoid [27] for further verification.

A. Human-to-humanoid Motion Imitation

The human skeleton provided by a Kinect sensor is a

set of line segments based on predefined key joints as

shown in Fig.4(a). We define an abstraction consisting of

19 unit vectors for a pose as illustrated in Fig.4(b), which
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Fig. 6. Eight basic poses are reconstructed by our method (left of each pair) and compared with the ground truth (right of each pair).

The similarity metrics, Mmax and Mavg , of each pair are also reported. The evaluation is taken on a projection defined by using 1, 644

landmark pairs.

Fig. 7. Statistics in eight motions for the change of two metrics in degree: Mmax (blue) and Mavg (red). The evaluation is also taken on

a projection with 1, 644 landmark pairs.

is independent different body dimensions. It should be

pointed out that it is unnecessary to always use the

full set of unit vectors unless full body motion must

be sensed. The NAO humanoid robot has 26 degree-of-

freedoms, including the roll, pitch, and yaw of all its

joints (see Fig.4(c)). Posing a NAO humanoid can be

executed by specifying the values of all its degree-of-

freedoms.

To collect the data-set of human’s motion, a user

is asked to do arbitrary motion in front of a Kinect

camera. Meanwhile, we have implemented a straightfor-

ward inverse kinematics (IK) based scheme for upper-

body motion on NAO. The roll, pitch, and yaw of every

joint can be computed directly by the unit vectors of

a human’s skeleton model. After using mean shift to

extract the landmarks of motion from raw data set,

their corresponding landmark poses in the C-space of

humanoid can be generated by this IK. Besides, we also

define eight basic poses (see Fig.5) which play a critical

role when evaluating the similarity between projected

poses of humanoid and poses of human.

Using the landmark poses defined in this way, human-

to-humanoid motion imitation has been implemented by

a single-core C++ program. All the tests below are taken

on a personal computer with Intel Core i7-3770 3.4GHz

and 8GB RAM memory.

B. Experimental Results

We evaluate our method mainly from three perspec-

tives, including the computational efficiency of pro-

jection, the quality of reconstructed motion, and the

influence by the size of landmark set. All are tested on

the platform of NAO humanoid.

Efficiency of Projection: From Section II-D, we know

that the complexity for computing projection depends

on the size of neighbors (i.e., L and M ). The cost of

computation increases with larger L and M as more
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candidates and more reference kernels will be involved.

In all our experiments, we use L = M = 10 and the

average time for making a configuration projection is

0.00273ms. When increasing to L = M = 50, the

average time cost is still only 0.0201ms. By contrast,

the rough time cost of offline optimization based tech-

niques (e.g., [1]–[6]) for each computational step ranges

from tens of milliseconds to several seconds. Online

methods generally require at least several milliseconds

to compute each status update as reported in [7]–[12].

Comparatively, the overhead of our method for motion

imitation is very light – i.e., it fits well for different real-

time applications.

Quality of Reconstruction: Two metrics are used in

our experiments to estimate the quality of a projected

configuration r∗ ∈ R
n referring to its corresponding

ground truth value rgt – the maximum absolute deviation

in degree as

Mmax =
180◦

π
‖r∗ − rgt‖∞,

and the average absolute deviation in degree as

Mavg =
1

n

(

180◦

π
‖r∗ − rgt‖1

)

.

The evaluation is taken with a set holding 1, 644 config-

uration pairs as landmarks. All those eight poses shown

in Fig.5 are tested, and the results are shown in Fig.6.

The results of comparison (in terms of Mmax and Mavg)

indicates that the poses generated by our method share

good similarity with the ground truths. Besides of static

poses, we also evaluate the quality of reconstructed

motion in the C-space of humanoid as a sequence of

poses. We define eight basic motion sequences, each of

which starts from the rest pose and ends at one of the

basic poses. The complete human motions are recorded

for the reconstruction using our projection in the C-space

of humanoid. The projected poses are compared with

the poses generated by IK, serving as the ground truths.

The values of Mmax and Mavg in these eight motions

are shown in Fig.7. It is easy to find that the errors are

bounded to less than 10◦ in all motions.

Size of Landmarks: As presented in Section II-B, the

correspondence samples used to formulate projection in

our framework is extracted from the captured motions. In

our implementation, it is generated by a user moving in

front of a Kinect sensor for 5 minutes. Then, three sets

with different number of landmarks (1, 644, 961, and

86 respectively) are extracted. The corresponding pairs

of poses are then constructed with the help of IK. The

8-th pose in Fig.5 – POSE 8 and the motion from the

rest pose to POSE 8 are constructed from the projections

Fig. 8. To reconstruct motion using landmark sets with different

number of corresponding samples, statistics of Mmax and Mavg in

degree indicate that more landmark pairs lead to better results.

defined on the sets with different number of landmarks.

From the statistics and comparisons shown in Fig.8, it is

easy to conclude that our projection based formulation

converges when the number of landmarks increases. In

other words, more landmarks result in a more accurate

projection. However, it should also be noted that the

projection from the smaller set may still be useful in

some applications with low requirement on quality but

having more restrictions on speed and memory usage.

C. Application of Tele-operation

We have tested the motion imitation realized by our

method in an application of tele-operation using a NAO

humanoid. As illustrated in Fig.1, a user can remotely

control the motion of a NAO robot to grasp an object

and put it into a box. The scene that can be seen from

the camera of NAO is displayed on a screen placed in

front of the user as the visual feedback. The imitation

realized by our system has good accuracy. As a result, the

tele-operation can be performed very smoothly. Another

operation is also demonstrated in our supplementary

video that an object can be lifted up by the NAO robot

through the tele-operation setup based on our approach

(see also Fig.9). Functionality of the proposed approach

can also be observed from our supplementary video [28]

– https://youtu.be/ok3uFYFEU0I.

D. Imitation with Multi-robots

The experiment is extended to further apply the pro-

posed method to a lab-made Poppy humanoid [27],

which has 23 degree-of-freedoms. Similar to realizing

the imitation on NAO, an IK program is implemented

here for whole body motion on the Poppy humanoid.

Then the correspondence between specific poses of hu-

man and Poppy can be aligned with the help of this
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Fig. 9. Application of tele-operation using NAO humanoid: (left)

picking up a ring and putting it into a box, and (right) lifting up a

poster by two hands.

Fig. 10. Tests on the lab-made Poppy humanoid: (left) full

body motion and (right) simultaneous imitation in the heterogeneous

environment with a NAO and a Poppy.

IK. The ELM based configuration projection is applied

with the sparsely aligned correspondence. Full human

body motion has been tested with our setup (see the

left of Fig.10). Moreover, we also set up a hetero-

geneous environment with a NAO and a Poppy, and

conduct imitation on them simultaneously (see the right

of Fig.10). Note that the NAO humanoid and the Poppy

have different degree-of-freedoms, but the imitation with

high similarity can be achieved in real time according to

our supplementary video [28].

IV. CONCLUSION & DISCUSSION

In this paper, we have proposed a framework to

realize motion imitation. Different from conventional

methods, our method is based on a novel formulation

of projection between two configuration spaces with

different dimensions. Given a new input pose of human,

its projection in the configuration space of humanoid is

defined as finding the optimal C-point that minimizes a

back-projection deviation referring to pre-built kernels.

We have validated our idea by reconstructing humanoid

motion on a NAO robot and a lab-made Poppy robot.

The experimental results are encouraging and motions

of good quality can be realized very efficiently.

There are several potential improvements that can be

made to our method. The ELM based kernels currently

used in our framework do not have an explicit bound

for prediction with a new input. Finding kernel functions

that can provide a numerical bound on prediction could

be an interesting future work. Besides, we are also

interested in exploring more applications beyond tele-

operation. From the aspect of input devices, a single

RGB-D camera is used in our experimental tests. It

will be interesting to see how the performance of tele-

operation can be improved if a more precise input can

be provided (e.g., the dual RGB-D camera system [29]).

Vision based motion capture system is always limited by

the lighting condition as well as its portability. Another

possible future work is to take a direct mapping from

measured angular information (e.g., the gyroscope based

sensors [30]) to the motion on robots.
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