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Figure 1: An orientation-driven shape optimization apptos presented in this paper to show how a given model canfoended
so that the usage of the support structure is signi canttjuoed in AM with a single material. Layered fabrication lthsa the
FDM method (middle left) and on the SLA method (middle rigten both bene t from this work to improve the €iency of the
manufacturing and the quality of the nished models.

Abstract

In layer-based additive manufacturing (AM), supportingistures need to be inserted to support the overhangingnegiThe
adding of supporting structures slows down the speed ofdation and introduces artifacts onto the nished surfad& present
an orientation-driven shape optimizer to slim down the sufdpg structures used in single material-based AM. Thédpéer can
be employed as a tool to help designers to optimize the @iiginodel to achieve a more self-supported shape, which casdu
as a reference for their further design. The model to be aptichis rst enclosed in a volumetric mesh, which is emplogsdhe
domain of computation. The optimizer is driven by the ogeret of reorientation taken on tetrahedra with “facing-dosurface
facets. We formulate the demand on minimizing shape variatis global rigidity energy. The local optimization prahléor

determining a minimal rotation is analyzed on the Gaussrephehich leads to a closed-form solution. Moreover, we algend
our approach to create the functions of controlling the draédion and searching for optimal printing directions.

Keywords: geometric algorithm, shape optimization, design tooljtaddmanufacturing

1. Introduction model, the support can be removed automatically by a post-
process (refl|4]). However, for those manufacturing téghes

AM has emerged as one of the most important methods fojith a single material (e.g., SLA and the low-cost FDM ma-
realizing the fast fabrication of freeform solidStereolithogra-  chines), the supporting structure poses many problemsts.us
phy ApparatuSLA) andFused Deposition ModelinFDM)  Firstly, the volume of the support could be large compared to
are two widely used approaches in AM because they achievge designed model, which leads to a signi cant waste of ma-
a very good balance between the cost and the quality. Botterials, energy and time - our study shows that up t6%sof
SLA and FDM fabricate models in a layer-by-layer manner,the manufacturing time in FDM could be spent on the fabrica-
where supporting structures (also simply calgeghpor) need  tion of the support. Although the increase of fabricationiin
to be added during the manufacturing process. Speci cdiy, the Mask-Image Projection based Stereolithography Apparatus
manufacturing material cannot be deposited on a layer whergviP-SLA) [5] is not signi cant, because it is proportionaly
there is insu cient material on the previous layer. For exam-to the number of layers, another problem caused by the stgppor
ple, the overhangs with a large hanging area can easilyps@la in single-material AM is common. This is the deulty in re-
under gravity. The problem is solved by adding supports tanoving the supports automatically. When the support is fabri
the originally designed models (Fig.1). Recent develofmen cated in the same material as the design model, it is linkétkto
in AM allow us to generate the supporting structures autémat model by many thin columns. After fabrication, the suppert i

cally (e.g., [12]). separated from the main object by being torn away at the top of
the columns. This step is always performed manually. More se
1.1. Problems Caused by Support riously, the surface of the main object is easily damagedby t

When the support is fabricated by a dissolvable materialiSu@! artifacts which are left on its surface (see Figlrddz2
which is di erent from the one used to print the designed@" €xample). Note that although the process of drop-on-powd
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Figure 2: Artifacts are left on the surface of nished models
after removing the support structures — the photograph is of
a model fabricated by MIP-SLA. Examples of single-material
FDM can be found in [3].

Figure 3: Our supporting slimming optimizer (the stage smow
in yellow) can be incorporated into the common design piygeli

based AM anelective Laser Sinteri@LS) is self-supported 35 @ tool. This owchart shows how to use our optimizer in

by the powders, a large group of machines using FDM and SLA'M-based model design.
su er from the problem of support.

optimization. The procedure of optimization is driven bgnie
1.2. Tool for Design Pipeline - Motivation of This Work enting the tetrahedra with “facing-down' surface facetsing
In the literature of design-for-manufacturing, many appli ?tmapr tdecr_\m((:ja]! conttrr:butmnl of-th|s V:r? rk,Ga closedr;foruls d
cations allow the shape of a model be adjusted before -ution Is derived from the analysis on the f>auss sphere to de-
ptermine the minimal rotations (Sectibh 4). This work pr@sd

nalizing the design so that a better manufacturability can . ) .
achieved. After designing a shape with the help of modern ge@_ tool (with error control) for manipulating the shape of a de

ometric modeling techniques, designers start to take &6 s signed model to reduce the usage of supporting structunas. O

supportness' into consideration when they wish to fabeitche optimizgr can be integrat.ed into theldesign pipeline taeveli
physical model by single-material AM. In many cases, designthe designers from carrying out tedious work (Eig.3). To the

ers manually change the shape of a design and then verify st of our know!ec?ge,. this paper is the rst one which tack-
self-supportness by applying the support generation t&lsh es the s_hape optlmlza_mon problem so as to reduce the u$age o
a trial-and-error process is tedious and can take up muah fimpuPPOrting structures in AM.

and e ort. Little research attention has been paid in the litera-

ture to the automation of this procedure. In this work, we-pro 2. Related Works

vide a support slimming optimizer in the design pipelinedtph

designers to generate better self-supported intermetiiatiels ~ Shape and topology optimization techniques have been
as references for nalizing their designs. A new design e~ Widely employed in a variety of engineering applications
after integrating our shape optimizer is shown in[Rig.3. (ref. |6,.7]). Recently, these techniques have been usedn A

applications. For instance, the issue of a model balance for

AM has been tackled by Bvost et all[8] by carving and shape

deformation. This approach is followed by a worklih [9] to op-
We propose a novel shape optimization approach to optimizémize the moment of inertia for designing a spinnable objec

the shape of a designed mod@él into a “self-supported' state Telea and Jalba [10] investigated the printability of a nidje

for AM (see Fid.1). The optimizer is formulated on a volumet- voxel representation, where regions, bridges, spike afesho

ric meshT enclosingM (Section[3.11). The global shape of which are too thin can be automatically detected. A physi-

M is preserved by minimizing the energy of rigidity de ned on cally based stress-relief algorithm has been presentedilih [

T (Section3.2). The bene t of taking the computation ®n  to automatically detect and modify the areas with high stres

is twofold. Firstly, the computation is more eient and eas- by hollowing, thickening and inserting struts to reinfortte

ier to converge when the mesh densitylofs coarser thaiv . strength of the models. Wang et al. |[12] tried to generate a

Secondly, geometric details &t can be preserved during the skin-frame structure to minimize the volume of manufactgri
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1.3. Main Results



material and the number of struts. Zhou etlall [13] have devel
oped a method for determining the worst-load distributiomef
shape that will cause high local stress or large deformatson
that the shape can be enhanced at those weak regions. Umetani
and Schmidt|[14] have proposed a method to determine an op-
timal printing direction to maximize the mechanical strémof

a model fabricated by AM. Lu et al. recently solved a strength
to-weight problem in[[15] to relieve the interior stressidesa
printed model by introducing optimal honeycomb-cells stru
tures. Although many optimization issues relating to AMdav
been investigated, how to optimize the shape to reduce tite su
porting structures is still an open problem which needs to be
studied.

The determination of the parting direction for a mold is a
typical orientation optimization problem, and it is onetthas
been studied for decades. Chenl/[16] presented an algorith
to determine the parting direction by nding the minimum
volume bounding box through fuzzy representation selactio  To preserve the geometry details on the given madiee
Priyadarshi and Gupta proposed an algorithm_in [17] to ndconstructed a tetrahedral me§henclosingM as the compu-
the feasible parting directions through the visibility atéts by  tation domain. Every vertex okl is encoded with the posi-
graphics hardware acceleration. The graphics acceldnateld  tions of the tetrahedral vertices dn by the barycentric coor-
ware was also employed in_[18] to help speed up the search afinate. As a result, whem is deformed into a new shape, a
the feasible mold parting directions. Li et al. proposed @-pa deformed shape d#1 (i.e., M 9 can be obtained by applying
ing line generation algorithm for mesh modelsin [19]. Ak#e  the barycentric coordinate. When the volumetric mé&sks
approaches can be regarded as ‘rigid' orientation optiiniza coarser thaiM , the geometry details oM can be preserved
techniques that do not change the shape of the models. Oirr the deformation. There are many methods described in the
work deforms both the shape and the pose of an input model titerature for generating a surface mesh to enclose an syt
slim down its supporting structure for single-material AM. face mesh (e.g.| [25, 26]). After that, the tetrahedral niesh

In the literature, many geometric modeling and processingan be generated from the enclosing surface mesh [27].
problems are formulated under the framework of optimizatio  For a tetrahedral mesy = (V;EF;T), V = fyg
A good survey can be found in the book by Botsch etlal. [20].E = fejg F = ffixg T = ftjjygare used to denote the sets
Because the shape optimization taken in this paper is based of vertices, edges, facets and tetrahedrals, respectiyety< 3
a localglobal deformation strategy, we review only the relatedgives the position of each vertex andf; denotes the normal
technigues below. Some recent approaches solve the deformaf a facef;. The faces that are located at the boundary eire
tion problem based on thas-rigid-as-possibl§ARAP) con-  called surface facesand the tetrahedra that have at least one
sideration [[21| 22], where they preserve the rigidity ofrgve surface face are named ssrface tetrahedraThe sets of sur-
element in the local step and then globally blend the elesnentface faces and tetrahedra are representdd bgndT S. More-
together by solving a least-square problem. The position co over, all values from the original model are representeti wit
straints of handles can be enforced by xing the correspondsuperscript "0', and those computed from the current stateis
ing variables in the global step. The lofcabbal optimization  denoted with a superscript “c'.
is also employed in_[23] for solving the mesh parameteriza-
tion problem. Recently, Kwok and Wang [24] presented an
optimization framework for the design automation of human-
centric products by solving a mixed-integer ARAP optimiza-
tion problem. The procedure of lo¢global ARAP deforma-
tion employed in this paper is driven by a novel reorientatio
scheme to solve the problem of support slimming.

Figure 4: Flowchart of our shape optimization algorithm.

“facing-down' surface facets oh while minimizing its defor-
mation (see the owchart shown in Hig.4).

g‘.l. Computation Domain and Notations

Printing Direction: It
is the fabrication direction
along which the model is
printed layer by layer - de-
noted byd,. Without the
loss of generality, in the
rest of this paper we as-
sume thad,, is a unit vec-

3. Optimization by Deformation tor.

Maximal Self-Supported

The mission of our optimizer is to deform the input model _
M to a shapeM © by which the supporting structures are re- Figure 5: Faces are classi ed
duced and local details are preserved. To achieve this goal @ccording to the printing direc-
volumetric mesHr is employed as the computation domain sot!on-
that the geometry details can be preserved. The demandasiplac
on the slimming down supports are formulated as reducing the
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Angle: An overhanging re-

gion that can be printed
without adding support is
called self-supported. The
angle between the region's
tangent plane and the print-



ing direction is called the self-supported angle When dif-  constant matrices determined in the loggl step. Here, wetfor
ferent manufacturing materials are used, the AM procegsges alate the ARAP energy as Eq.(3) insteaj%)ﬁvtld_tv{‘ew VOKZ.
equipped with dierent maximal self-supported angles. We de-As a result, the factorization of a linear system can be kirse
ne a self-supporting coecient in our formulation in ac- the subsequent iterations of optimization.

cordance with the maximal self-supported anglgyx as
SiN( max)-

Fixed Region: During the shape optimization, a region of the
model is selected to be xed to serve as the boundary comditio
(see the yellow region in Fig.5 as an example). Tetrahedal v
tices (both the boundary and the interior ones) in this regie
xed. Users are free to de ne the parts to be xed in our ap-
proach. Usually, the bottom of a model is selected as the xed
region.

Rigid Transformation: The local step for obtaining; plays a
very important role in our formulation.

In the prior ARAP work, the rigid transformation from the
original shape/? of a tetrahedromto its current shap¥?

is determined by using a “signed version” of thiagular
value decompositioSVD) on the a ne transformation
matrix Q = VE(VP?) 1 (ref. [22]). Thatis,Q = U WT,
where is a diagonal matrix with all elements being pos-
itive.  de nes the scaling factors in three orthogonal di-
rections inQ. As a result,Q can be turned into a rigid
transformatiorM = UWT.

Safe Face:The surface face o8t whose normaf satis es
Ad, 1)
Applying M to a tetrahedrotwill transform it to an orien-
tation that best approximates to the current shapte &f
transformed surface tetrahedron may contain some risky
faces, and these need to be turned into safe ones by apply-
ing an additional rotatiofiR. Basically, an ideal rotation
turns all risky faces on a tetrahedron into safe ones while
conducting a rotation with a minimal rotational angle. The
method for solving this problem will be presented in Sec-
tion 4. Speci cally, after determining a minimal rotation
angle and its corresponding rotation axisR(f; ) can
be obtained [28]. For those safe tetrahedra and the interior
tetrahedraR(f; ) =1.

See the green faces in Figure 55 for an example. These faces
are termed the self-supported faces, and the above inggoali
the normals of faces is termed tkelf-supporting condition

Risky Face: The surface face with ap < . For example,
the orange regions in Figure 55 are formed by risky faces.

Note that a surface tetrahedron containing no risky facalied

a safe tetrahedron On the other aspect, if one of the surface
tetrahedron's faces is risky, the tetrahedron is also de ag a
risky tetrahedron

3.2. Optimization Framework

The goal of slimming down the support in AM can be inter- The rigid transformation applied in our optimization franuek
preted as deforming the given model into a new shape so that(te., Eq.(3)) is a cascade of these two transformationaus
has fewer risky faces. Because the volumetric n@slis used Lt = R(f; )M.

as the domain of computation, we convert the problem into thesgcedure of Optimization: We iteratively apply the local and
requirement of turning risky faces into safe ones while mini yan the global steps on the volumetric m&hto reduce the
mizing the deformation. number of risky faces.

Deformation Energy: For each tetrahedron2 T with four

verticesvs, V,, Vs andvs, we construct a local frame iras Step 1): For each tetrahedron, the rigid transformation

M between its current positicshape and the given posi-

Vi=[vi V4 Va2 Vg Vs V4] (2)

with v4 being an interior vertex on the volumetric mesh. This

selection of local origin is based on the heuristic that &eriar
vertex is connected with more tetrahedra. Making it stai (
origin) in a local rotation will have less in uence on the gbi
boring tetrahedra. With the help ¥f, theas-rigid-as-possible

(ARAP) energy of a deformed tetrahedral mesh can be de ned

as

X
E(CT™C) = wkvi™™W Lok, ()

2T

tion/shape is computed.

Step 2): For each risky tetrahedron, a minimal rotation
R(f; ) is computed to convert it into a safe one (see Sec-
tion 4 below). As aresult, is obtained for all tetrahedra.

Step 3): A least-square solution for the new positsbape
of the volumetric mesh is obtained by minimizing the de-
formation energy (Eq.(3)).

Step 4): Go back to step 1) until the terminal condition is
reached.

wherek k- is the Frobenius norni,; is a rigid transformation A hybrid terminal condition is employed in the iteration) {ae
matrix of the tetrahedroty andw; is t's volume serves as the maximal iteration steps (e.g., 100 in our implementatianj a
weight. In the prior work of ARAP deformation, position han- (b) the number of risky faces do not decrease in the suc@essiv
dles are applied to move some vertices so that an updated shape steps of the iteration. More sophisticated terminal disn
can be obtained by minimizing the above ARAP energy. Thedions will be introduced in Section 5.2 to control the geamet

optimization is actually in a least-square form whan are the

approximation error on the optimized (deformed) model.
4



Figure 6: Rotation analysis on the Gauss sphere to enfoece t
condition of self-supporting: (a) a rotation to moig and i,
into the feasible regioHl ,, (in cyan) w.r.t. the printing direction
ap, and (b) dual-feasible-regions éf andf,, Ha, andH,,
forms a target region d3; = Ha, \ H 4, to inversely rotateéﬂp
into.

rI‘:igure 7. Case | — there is only one surface face on a risky
tetrahedron.

4. Computation of Minimal Rotation

Served as the core of our shape optimization approach, the
computation of minimal rotation is formulated in a closeulrf
in this section.

Problem De nition: Given a tetrahedromn 2 T ° with four

facesffig(i = 1;:::;4) and their corresponding normalsfdgy  Figure 8: Case Il — there are two surface faces on a risky-tetra
the minimal rotation is de ne as hedron. The Gauss sphere is decomposed into ve regions cor-
responding to the ve dierent con gurations of minimal rota-

argmin; kKR(F; ) 1K tion

st; 8f2FS; (R(F; )A) dp @

wherek k; is ageneralmatrix norm to measure how signi -
cantlyR(f; ) deviates frond. Dual-Feasible-Region (DFR):The self-supporting condition

for a surface face with normail(i.e., Eg.(1)) can be considered
as requestingAIp to be located at the same sidefoivith refer-
ence to the planexfi, + yfiy + zii,+ = 0. Therefore, a DFR of
ap for A can be de ned by the half-space

Directly solving this problem by constrained nonlineariopt
mization is tedious and time-consuming. The problem is & pur
rotation issue. Therefore, we analyze it on the Gauss spbere
nd a compact solution.
Ha=fpj8p2S%ip A+ O 5
4.1. Analysis on Gauss Sphere n=IPICP P g ®)
For a risky tetrahedron iR3, the unit normal vectors of its Thus, the self-supporting condition beconﬁgsz Hs.

four faces can be considered as four points on the Gaussesph Iverse Rotation: Rotatinad by around the axié is equiva-
S?. Meanwhile, the unit vectod, of the printing direction is j gn by q

also mapped to a point of2. Without a loss of generality, lent to inversely rotating, with the angle ( ) around the same

d, is assumed to be the top point of the Gauss sphere (i eaxis. As a result, the minimal angle can be determined by-rota
Ap . . a’ - "~ .
dp = (0;0;1)). Now the condition of self-supporting for a sur- ing dp into the DFR offi. Speci cally, for a surface tetrahedron

face face (Eqg.1) can be interpreted as that the nofimalst .tW'th m surface facesnf > 1), we can inversely rotating,
_ into the common area de ned by the DFRs of these faces — that

be located at the half-spa¢t, abovédon the planez = isH, = Ha\  \H 5 (see Fig.6(b))
As illustrated in Fig.6(a), a risky tetrahedron may havew fe ! M fim g '
surface faces that are not self-supported. When this gituati  Methods for determining the minimal angle (by inverse ro-
occurs, we can apply a rotation on the normal vectors to movéation) in di erent con gurations are presented below. Cases
them into the safe region (i.e., insitlg,). The rotation is actu- of tetrahedra with one and two surface faces are discussed. W
ally R(f; ) used in Eq.(4), where a minimal rotation angliss ~ found only a very few cases with three surface faces in ots.tes
demanded. For such cases, the con guration space on the Gauss sphere is

When there is more than one risky face on a tetrahedron, delivided into eight regions. This makes the closed-form form
termining a minimal rotation to move all points (correspimgd  lation of minimal rotation very tedious. To have an easy-to-
to the normals on risky faces) into the feasible redibnis not  implement approach, a tetrahedtawith more than two surface
straightforward — see Fig.6(a). To solve this problem, & duafaces is splitinto four tetrahedra by inserting a new vestethe
representation dfl , is de ned as follows. middle oft, and this will not a ectt's neighboring tetrahedra.



Figure 9: Whenap falls in di erent regions, it has derent
targets for the minimal rotation: (a)-(d) the con guratgfor
regions I-1V, respectively.

4.2. Case |: One Surface Face

For the case of a tetrahedromvith only one surface facé
whose normal i€\, if the self-supporting condition (Eq.(1)) is
not satis ed onf, the pointd, must fall outside the feasible
regionHps. The minimal inverse rotation that moveg back
into Hx can be determined by projectirg onto the plane of
H and then normalizing it to the unit vectd. Hered? is the
closest point ta, in Ha. Thus, the minimal rotation axis is
r=d% dpand the rotation angle= arccos@, d9).

4.3. Case Il: Two Surface Faces
For the case that a tetraheditdmas two surface facefs and

Fig.9(a)). HereH denotes a complementary setidf. To
realize that, we projecﬁp onto the pland®;, and normalize it
to a unit vectoﬂg. As a result, the rotation axis for turning risky
faces safeis = dJ dpwith the angle = arccos@d dp). Note
that, in all the con gurations below, and can be determined
in the same way after obtainir&%.

Con guration II:  This con guration occurs whed, 2 Ha, \
H-#, (i.e., falling in the green region shown in Fig.9(b)). We
then project, onto the plan@;, and normalize it tcd%, which

actually movesl,, onto the arcSiBC.

Con guration lll:  The respective region of this con guration
is Hac\ H»a, \ H»a, (the red region shown in Fig.9(c)). If
ap falls in this con guration, the closest point in the feasibl
regionH is the pointA. The position ofA can be computed by
the planes. We then assign the positior\dd ag.

Con guration IV:  This isélp 2Hac\ Hoa, \ Hop, (the pur-
ple region in Fig.9(d)). IH, the closest point tap is pointC.
Thus, its position is assigned é§to compute the minimal rota-
tion along the axis = d% dpwith the angle = arccos@ dp).

By the con guration analysis above, we solve the problem
of minimal rotation in a closed-form instead of non-lineatie
mization. Meanwhile, the global step is a pre-factorizeaste
square problem. As a result, each iteration of the optindnat
procedure can be evaluated veryaently.

5. Results and Discussion

The approach proposed in this paper has been implemented
by C++ together with the Eigen library [29] as the numerical
solver. All the tests below are taken on an Intel Core i7-3770

f, (with A; andf, as their normals respectively), we present a3-40GHz computer with 8GB RAM. Our current implementa-

closed-form solution of the minimal rotation below. Againe

analysis is performed with the help of the DFRs and the imvers

rotation. Speci cally, the Gauss sphere is decomposed wato
regions with respect tbl 5, andHa,, where di erent regions
lead to di erent con gurations of minimal rotation. The yellow
part is thefeasibleregionH. The boundaries of the con gu-
ration regions are formed by ve planes (see the illustraiio
Fig.8). Two planesP,s, andP-4, passing through the corner
points ofH are perpendicular tBs, andPs, respectively. The

tion does not use the multi-core acceleration. The apprbash
been tested with several models, and all the results areuenco

aging.

5.1. Experimental Results

Our rst example is the Dino model which was shown in
Fig.1. In this optimization, we set the maximal self-sugpdr
angle max = 0. As a result of shape optimization, the Dino
‘raises up' its head and arms. Local details of the bone struc

plane Pac passing through the origin is perpendicular to thetures are well-preserved. The original and the optimized-mo
vectorca, which splits the region into two halves. Equations of €S have been tested on two drent types of AM machines —

the ve planes help to de ne ve half-spaces, as follows:
Ha, =fpj8p2S%5hy p+
Ha, =fpj8p2S%5h, p+
Hac=fpj8p2S%ca p Og
Hoa, =fpj8p2S%(Ca ) p+d Og
Hon, =fpj8p2S%;(h, ca) p+d Og
ﬁzkandd = kﬁl ﬁ2k=(1+ ﬁ]_ ﬁz)
Con guration I: Whend, 2 Ha, \H »4,, the minimal inverse
rotation movesfjp onto the arcADC (see the blue region in

6

Og
0g

(6)

whereda= (; )=k,

the MIP-SLA and the Fortus 360mc FDM — where the support-
ing structures for MIP-SLA are generated by the region sub-
traction method [2] and the support for FDM is generated by
the software delivered together with the Fortus machinee Th
second example is the Armadillo model. Figure 10 shows the
result of shape optimization on this example, where Arntadil
‘raises up' its arms and “pulls down' its tail. Quantitativea-
surements of these two examples are given in Table 1 for the
purpose of comparison.

In both MIP-SLA and FDM, the material usage for the sup-
port has been greatly reduced. Because the fabrication time



Figure 11: Examples of support slimming on more models: Béuous (top), Bunny (middle) and Pig (bottom). The suppgrti
structure can be esctively reduced by applying our shape optimization apgnda all of these models.

Table 1: Comparison of Fabrication Cost

Material Usage’ Layer | Fab*

Printer Main [ Support | Num Time
Dino - Fig.1
Input | MIP-SLA [ 11.2g | 3.2g 717 127m
Optm | MIP-SLA | 10.9g 0.5g 865 153m
Input | FDM 1.30in® | 2.12in® | 408 428m
Optm | FDM 1.21in® | 1.07in® | 491 281m
Armadillo — Fig.10
Input | MIP-SLA | 26.4g 2.9¢g 692 117m
Optm | MIP-SLA | 25.69 0.29 785 133m
Input | FDM 1.47in® | 2.57in® | 389 483m
Optm | FDM 1.38in® | 1.23in® | 440 322m

YThe material used in MIP-SLA is measured by the weight of resin

and in FDM is measured by the volume of laments.
“The time of fabrication is reported in the unit of minutes.

Table 2: Statistics of Computational Performance

Volumetric Mesh
Model Fig. [ Ver. # [ Tet.# | ma Time
Dino 1 974 3,299 0 4.151s
Armadillo 10 2,373 8,189 0 | 10.717s
Dinosaurus| 11 4,345 16,803 | 10 | 22.525s
Bunny 11 439 1,536 0 1.899s
Pig 11 1,046 4,045 | 10 5.133s

The time reported in this column is the total time of 100 iterations in
the unit of seconds. We assume éient materials are used in the
fabrication — therefore, dierent maximal self-supported anglegax,

are used.

of FDM is proportional to the total materials usage, slimgin
down the support will signi cantly improve the eciency of
the fabrication as well. Note that this will bene t not onlget
FDM printing with single material but also the advanced FDM
using dissolvable material in supports. The time of faliiica

in MIP-SLA depends on the number of total layers of a model.
Therefore, slimming down the support will not speed up the
MIP-SLA printing. However, another important aspect of MIP
SLA bene ted by this work is the surface quality of nished
model. The supporting structures and the main model aredink
by a few anchor points (AP). After removing the supports in a
post-process, in place of the APs some artifacts usuallgapp
(Fig.2). The number of APs on the optimized Dino is reduced
from 61 to 18, and the number of APs on the optimized Ar-
madillo model is reduced to=16 of the original input with 32
APs. Three more examples are shown in Fig.11.

We also study the performance and the convergency of the
shape optimization algorithm. The statistics about themom
tation of di erent models are given in Table 2, where the total
time of 100 iterations is reported. Note that the majorityhef
time is spent on the local steps for computing SVD and mini-
mal rotation. The equation system of the global blending ste
needs only to be factorized in the rst step, and the facaian
can be reused in the subsequent steps where the substiation
be computed very eciently. To further investigate the conver-
gency of our shape optimization algorithm, we track the num-
ber of risky faces during the computation. As shown in Fig.12
the number of risky faces keeps dropping in all the examples
(although this may not be monotonically).

It is obvious that having more vertices on the volumetric
mesh leads to longer computing time. On the other hand, a
volumetric mesh with too coarse a resolution will give a éarg
shape approximation error. Therefore, we usually employ a
mesh with less thankSvertices, and this results in a good trade-
0 between speed and quality.



Figure 12: A chart to show the percentage of risky faces com-
pared to the number of risky faces on the input models.

Average Node Deviation RatigANDR): This measures
the average displacement at all the verticeMofvith re-
spect to the diagonal length bf's bounding box.

. . . We start from the optimization with = 0 and evaluate the
Figure 10: Example of support slimming on the Armadillo \\NpR and ANDR on the resultant model. If they are not satis-
model and the comparison of AM results before vs. after thegq the value of is incrementally changed until a result with
shape optimization in both MIP-SLA (bottom-left) and FDM 5 satistactory shape deviation is obtained. In practicsigde
(bottom-right). The optimization "raises up’the arms apalls o5 gyally require that ANDR is less than 5% or MNDR is less

down’ the tail. In the pictures of MIP-SLA, the bottom row .1 1504 to control the deformation. For the dinosaurus mode
shows the optimized result; in the pictures of FDM, the rightgnqwn in Fig.13, the desirableis less than 30

model has been optimized. ) ] o o
Searching for Optimal Printing Direction

The printing direction is usually chosen empirically by rssie
5.2. Extensions accordance with the features on an input model or simply as-
Our optimization approach provides a basic tool for reafizi  signed in the bottom-up direction. However, for some models
the more interesting applications. Two examples, (1) sttppo such as the running Armadillo model shown in Fig.14, it is not
slimming with shape control and (2) searching for the optimaeasy to nd a heuristic printing direction. Our approach &an
printing direction, are presented in this section. employed in the inner loop as a tool to search for an optimal
Shape Control in Optimization printing dir(.actioln. Here the optimal pri'nting direction de-
In many cases, the designers may not wish to change the shaggd asa d're_Ct'Qn that leads to the m'T"ma' number of anchor
of a model too much during the optimization for support slim- oints (APs) !mkmg_ supports to_the main model (re_f. [2Inat
ming. This can be realized by adding a penalty factamhich means we wish to introduce minimal .damgge during the post-
is an angle between Gand 90. Speci cally, L, = R(?; M process to remove the support;. We iteratively rotate thetin
is employed in the shape optimization as the transformationmodel .along'the(- andy-axes with a F:onfstant angle. For each
Where new orientation, we apply the optimization approach fololw
by the support generation algorithm, on the result of whingh t
O=max( ;O0) (7 number of APs is counted. Among all the discretely spanned
orientations, the one with the minimal AP is nally chosen as

As a result, when a largeis empl many of the risky f . .
s a result, when a largeis employed, many of the risky faces an optimal printing direction (see Fig.14 for an example).

will not be rotated (in the cases thatletermined by the local
minimal rotation is less than). As shown in Fig.13, dier-
ent values of result in di erent degrees of deformations in
the shape optimization for support slimming. In practide t
penalty factor is used together with two metrics for shape-de
ation:

5.3. Limitation and Discussion

Although our approach can successfully optimize the shape
of given models to slim down the supporting structure, ibals
has some limitations. First of all, our optimizer is basedtun
assumption that the shape of the original model can be cldange
Maximal Node Deviation RatigMNDR): This metric  For some applications in which the original model cannot be
evaluates the maximal displacement at the vertices of thdeformed, our optimizer is not able to help. Secondly, beeau
input mesh modeM with respect to the diagonal length we set the goal of optimization only at slimming down the sup-
of M 's bounding box. porting structure, the model cannot be converted into & full



Figure 14: Our approach can be computeatiently on freeform models. As a result, it can be used asladg@mmpute the optimal
shape for each printing direction. The number of APs linksngports to the main model can be used as a criterion fortsejec
the printing direction. Smaller AP leads to less surface atp@nwhen removing the supports in the post-process of pgintiVe
have used the MIP-SLA to print the original model and the nhedéh optimal direction circled by the dashed lines — seeléfie
column of the fabricated models. Note that, in each ori@mabptimization is also taken to further deform the modbian
optimal shape. This is derent from what can be obtained by searching with rigid fiamnsations.

self-supported shape. On the other aspect, self-supppneds computation. We prevent such cases by checking the number of
usually needs to be considered at the very beginning of the deisky faces after each iteration, and always store the lessitr

sign process. One of the related works can be found in [30Jamong the past steps of iteration. How to generate a volionetr
Thirdly, our support slimming work does not consider the sur mesh bounding the input model more tightly has beyond the
face damaged on the safe faces by adding supports for thye riskscope of this paper. We consider it to be a work which needs to
faces exactly above them. Lastly, the volumetric mesheshwhi be taken in the future.

are coarser than the input mesh models are used as the cemputa ) ) o
tional domain in our approach to preserve the geometridldeta  Because the computational domain of our optimization
On the downside, this also neglects the overhangs insidiea sgramework is a coarse volumetric mesh, Idgadbal self-
tetrahedron. We will consider these factors by investigat intersection may be introduced into the . volumetric mesh.
method for computing the minimal rotation in more complex” POSt-processing step needs to be applied to remove self-
con gurations. Speci cally, multiple faces on the input sie  INtersections in such cases (e.g., [31]).

M inside a tetrahedron will be employed to construct the DFR

. o In our current formulation, one interior vertex (i.a) is
on the Gauss sphere. We will study this in our future work.

chosen as the origin of local rotation based on a heuristie co

The success of shape optimization on a coarser volumetrisideration. The eectiveness of selecting dérent origins of
meshCy relies on the error between mesh surface of the giverhocal rotation can be released by using the mean-subtractio
model and the boundary & ; the smaller the better. When a strategy in global blending (ref. [32]). However, in all afiro
very coarse mesh is employed, the “optimized' shape cordputeests, the current implementation converges well when we us
from the volumetric mesh may have more risky faces beforene of the interior vertices as the origin of local rotation.

9



Experimental tests shown at the end of the paper have veri ed
the e ectiveness of this approach. The optimized models can
serve as useful references for designers when self-suygsert

is an important factor to be considered.
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